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Over the past 10 000 years, man has used the rich genetic

diversity of the maize genome as the raw material for

domestication and subsequent crop improvement. Recent

research efforts have made tremendous strides toward

characterizing this diversity: structural diversity appears to be

largely mediated by helitron transposable elements, patterns of

diversity are yielding insights into the number and type of genes

involved in maize domestication and improvement, and

functional diversity experiments are leading to allele mining for

future crop improvement. The development of genome

sequence and germplasm resources are likely to further

accelerate this progress.
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Introduction
The maize genome is a source of tremendous phenotypic

andmolecular diversity. Indeed,whenconsideringnucleo-

tide polymorphism in genes, two maize lines are on aver-

age as diverged from one another as humans are from

chimpanzees [1,2]. Such abundant variation was first used

by Native Americans for domestication, and continues to

be harnessed today by modern breeders for crop improve-

ment. Here, we discuss recent advances in studies on the

molecular and functional diversity of maize, including

increased understanding of genome rearrangements and

the first large-scale identification of the genes that are

involved in domestication and maize improvement. In

addition, we review the advent of positional cloning and

association approaches that allow for the dissection of

complex traits down to the gene and nucleotide level.

Molecular diversity
Whether measured by allozymes, microsatellites (or sim-

ple sequence repeats [SSRs]) or DNA sequences, maize
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has long been known to be genetically diverse. On the

DNA sequence level, exotic and elite maize genotypes

contain more diversity than humans, Drosophila [2] and

many wild plants [3]. It has recently become clear, how-

ever, that such diversity cannot be captured fully by

standard marker systems such as SSRs and single nucleo-

tide polymorphisms (SNPs). For example, Fu and

Dooner [4] uncovered substantial differences in bacterial

artificial chromosome (BAC) sequences from the bronze
(bz) region of two maize inbred lines, B73 and McC. One

major difference between these lines was the comple-

ment of retroelements, which differed in number and

location. More surprising was that the two lines appeared

to differ in gene complement. In a region of about 150 kb,

B73 and McC shared six genes but differed in four. Thus,

a B73�McC hybrid would be hemizygous for 40% of

genes in the bz genomic region.

These observations raised more questions than answers.

Is there something unique about the bz region or is

variation in gene content a genome-wide component of

maize diversity? How are the genes duplicated or moved?

Are the genes functional after they have been moved?

Larger studies of multiple regions have now confirmed

that non-homologies are the standard across the genomes

of maize varieties [5,6]; incredibly, more than one-third of

genes or gene fragments were specific to a line. In a

follow-up paper, Dooner and coworkers [7��] addressed
some of these questions by sequencing the bz genomic

region from an additional inbred line (Mo17). They

noticed that insertions among lines contained subtle

but consistent features, including a 50-TC terminus, a

30-CTRR terminus, an insertion site between the host

nucleotides A and T, and a 16–20-bp palindrome near the

30 terminus. These are features of helitron transposable
elements — a somewhat mysterious class of mobile DNA

elements that might replicate by a rolling circle mechan-

ism [8] — and they strongly suggest that helitrons are

responsible for capturing and moving genes around the

maize genome.

In a parallel study, Morgante et al. [9�] confirmed that

helitrons mediate gene movement among maize lines. In

addition, these authors determined that the phenomenon

is not limited to the bz region, because 20% of �21 000

genes (or gene fragments) differ in genome location

between B73 and Mo17. Clearly contributing to poly-

morphism among modern maize, helitrons have been

active recently and might still be active. The mechanism

by which they capture and move genes, however, remains

unknown. The functional effect of gene movement by

helitrons and other transposon-like pack-MULEs (i.e.
www.sciencedirect.com
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Mutator-like DNA elements) [10] is also unclear. Rather

than moving complete genes, helitrons appear to transfer

gene fragments. Nevertheless, some of these fragments

are expressed [4,11] and could affect function, either by

RNA interference or by translation into protein. It seems

likely that helitron-induced diversity may contribute to

differences in gene expression between lines [12�],
dosage effects [13] and heterosis [4].

Although the non-homologies in maize genomes were

surprising when first discovered, such structural diversity

is consistent with allelic diversity dating back a couple of

million years, and with the presence of very active mobile

elements over the past fewmillion years. TheB73 genome

is currently being sequenced, so a gene inventory of this

linewill soon be available. Although the sequencing of one

individualwould be sufficient to identifymost of the genes

of a particular species, additional lines will be required for

maize because of extensive non-homologies. Thirty per-

cent of the gene fragments in maize are non-homologous

between two lines; thus, even assuming that 90% of these

non-homologies are pseudogenes, sequencing one line

will only identify 85% of functional genes (Figure 1).

Domestication and artificial selection in maize
Archaeological [14] andmolecular [15] evidence indicates

that modern maize (Zea mays ssp. mays) was domesticated

from teosinte in southern Mexico between 6600 and 9000

years ago. Isozyme [16] and microsatellite [15] data pin-
Figure 1

Expected proportion of the functional gene space captured

depending on the number of maize lines sequenced. These rough

approximations assume the infinite allele model for the varying levels

of non-homologies between pairs of lines and a total population size

of 100 lines. Some data suggest that 30% of the genes are non-

homologous between two lines, so the 3% plot is equivalent to

assuming that 10% of the non-homologies are functional and 90%

are non-functional.
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point the annual Balsas teosinte (Zea mays ssp. parviglu-
mis) as the direct progenitor to maize. Dispersal occurred

rapidly, with evidence of cultivation in South America

more than 6000 years ago [17]. Selection soon followed:

favorable alleles at loci controlling plant morphology and

kernel nutritional quality were fixed at least 4400 years

ago [18�], and further selection by Native Americans saw

maize adapt to numerous varied environments. More

recently, selection by plant breeders has focused on

the derivation of inbred lines that are suitable for the

production of hybrid maize. In the domestication phase,

selection was probably focused on making maize culti-

vatable and improving access to the seed, while during

the improvement phase, selection focused on yield, grain

quality, and agro-ecosystem adaptations.

Maize domestication and subsequent selection events

necessarily reduced genetic diversity in the maize genome

when compared to its progenitor population [19]. To

estimate the parameters of this genetic loss, Wright et al.
[20��] compared SNPdiversity betweenmaize inbreds and

teosintes in 774 genes. Two classes of maize genes were

identified: those consistent with a domestication bottle-

neck of moderate intensity, and a second class that experi-

enced a much greater reduction of genetic diversity

consistent with artificial selection. If the 2–4% of genes

belonging to this latter class are representative of the larger

genome, approximately 1200 genes bear a signature of

selection that is consistent with being direct targets of

selection. Despite these population bottlenecks, however,

inbred maize lines exhibit high levels of nucleotide diver-

sity, retaining up to 60% of the diversity of Zea mays ssp.
parviglumis and 80% of the diversity of the landraces [2].

To identify these targets of selection and the traits they

control, maize researchers have employed both studies

directed at logical candidate genes for differences

between teosinte and maize and unbiased genomic

screens for selected genes. Quantitative trait locus

(QTL) analysis of populations derived from crosses of

teosinte to maize identified five major domestication

QTL [21]. A combination of transposon tagging, candi-

date-gene testing and map-based cloning subsequently

led to the isolation of the genes underlying three of these

QTL. The teosinte branched1 locus [22] on chromosome 1

and the barren stalk1 locus [23] on chromosome 3 interact

to control lateral meristem formation, thus converting the

lateral branches of teosinte into the maize ear. Selection

at the teosinte glume architecture1 (tga1) locus [24,25��] was
responsible for transforming the hard cupulate fruitcase of

teosinte into the uncovered grain of the maize ear, a key

step in making teosinte an edible crop. The role of a

fourth gene, ramosa1, in shaping maize ear morphology

has also been recently identified [26]. Confirming the

proposal by Doebley and Lukens [27] that targets of

selection in the evolution of plant morphology will often

be transcription regulators, all four of these genes encode
Current Opinion in Plant Biology 2006, 9:172–176
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transcription factors. A direct analysis of maize candidate

genes that encode enzymes involved in starch metabo-

lism demonstrated that artificial selection on starch qual-

ity occurred during crop improvement [28].

Increased use of unbiased genomic screens to identify

targets of selection [20��,29,30�] has greatly expanded our

knowledge of the number and scope of the genes that have

been involved in the improvement process. New data

suggest that auxin-regulated growth, stress responses,

maturation and amino-acid composition are all traits with

a history of artificial selection [30�]. Once a comprehensive

understanding of selected genes and their corresponding

traits is obtained, we can begin to modify plant breeding

strategies by reintroducing genetic variation that has been

lost to selection for key agronomic traits.

Maize functional diversity
In the past few years, maize researchers have made

tremendous strides in the identification of genes and

nucleotides that control quantitative variation. Most of

the phenotypic variation in a species is controlled by

polymorphisms at numerous genes; these polymorphisms

are the functional basis of quantitative trait loci (QTL).

Most crop improvement relies on selecting these numer-

ous QTL. QTL mapping in particular, has been pio-

neered in maize over the past two decades, with roughly

100 research studies published in this area during the past

two years alone. Given that the average maize gene

houses a couple of hundred common polymorphisms

and even 20–30 amino acid polymorphisms that segregate

among a diverse collection of lines, geneticists must

decipher how all of these genes affect quantitative traits.

Three major approaches are being used to evaluate this

tremendous diversity: F2-derived QTL mapping, posi-

tional cloning, and association mapping.

Mapping using F2-derived populations continues at a

great pace for numerous traits, including developmental

traits, physiological responses [31], and biochemical

makeup [32]. The intermated B73 �Mo17 mapping

populations [33] serve as an invaluable resource for these

studies, improving the resolution of QTL mapping 3–4

fold. Many more studies will make use of these inter-

mated populations in the near future, leading to the

dissection of numerous QTL, particularly as results are

integrated and anchored with the physical map.

Researchers of complex traits have debated whether

quantitative variation is the product of numerous small

QTL or a wide distribution with both large- and small-

effect QTL. F2-derived QTL mapping was used to gain

insight into this basic genetic architecture of maize. In

one study, two elite inbred lines were crossed and

mapped in a 1000-individual population in numerous

environments [34�]. In a second study, the high and low

lines derived from 70 generations of long-term selection
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were crossed, intermated, and mapped [35��]. Interest-
ingly, both of these studies documented numerous QTL

of very small effect. As experimental design in both cases

included high statistical power and robust innovative

analyses, numerous QTL of small effect might be the

norm for the maize genome. However, both the two pairs

of parental lines used for these populations are probably

only tapping a small proportion of maize functional varia-

tion: founders of the elite inbred lines were targets of

breeding selection for more than 50 years, a process that

might have eliminated all large-effect QTL, whereas the

long-term selection founders comprised a single farmer’s

field that could have contained little genetic diversity.

Additional research utilizing more diverse maize germ-

plasm will be needed to resolve this issue.

The positional cloning of QTL in maize has historically

been problematic because of the genome’s large size and

the presence of many retrotransposons [36]. With the

development of physical maps, however, it is now possi-

ble to positionally clone maize QTL. The maize domes-

tication gene tga1 was the first to be positionally cloned,

by examining more than 3000 segregating plants and then

mapping to within a 1042-bp fragment [25��]. The flower-

ing time locus vegetative to generative transition 1 (vgt1) has
also been positionally cloned, and its position subse-

quently confirmed by association mapping ([37]; Savli

et al., 2005 Maize Genetics Meeting Abstracts). Once the

maize genome is completely sequenced, positional clon-

ing of QTL should become even more routine. Indeed, as

maize boasts a higher centiMorgan to gene ratio than

Arabidopsis, the total number of plants and meioses

needed for positional cloning of QTL will be less in

maize than in Arabidopsis.

In contrast to linkagemapping, associationmapping relies

on surveys of natural variation, exploiting the rich history

of alleles and recombination gained through evolution. In

these approaches, diversity is evaluated across natural

populations, and polymorphisms that correlate with phe-

notypic variation are identified. Because no mapping

population need be created, association tests are much

faster than alternative linkage methods, and also enjoy

higher resolution. This high resolution is dependent upon

the structure of linkage disequilibrium (LD), or the

correlation between polymorphic loci within the test

population [38]. LD dictates experimental design, with

the distance over which LD persists determining the

number and density of required markers. LD decays

rapidly in maize, making this phenomenon an ideal tool

for association studies: in landraces and a broad sample of

tropical and temperate inbreds, LD often declines to

nominal levels within 1.5 kb [2,39], whereas elite breed-

ing material has less rapid decay [40,41].

Although used extensively to study the genetic basis of

human diseases, association mapping has only recently
www.sciencedirect.com
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been applied to maize and other plant populations [42–

45]. Association mapping has identified the candidate

nucleotides that affect starch [46], carotenoid [44], and

maysin content [47]. Improvements continue to be made

to the mapping process itself, including the development

of novel statistical approaches that control for pedigree

and population adaptations [48��], the integration of

epistatic interactions in the dissection of complex traits

[47], and the identification of limitations related to

population structure [49]. Because current association

analysis in maize is candidate gene driven, however,

we are still limited to working with known pathways

and genes. To resolve this issue, a nested association

mapping (NAM) population is being created for the

maize community (www.panzea.org). In this population,

two different scales of LD are created by crosses between

27 very diverse lines. The two scales of LD and large

sample size will permit a very high resolution genomic

scan.

Conclusions
The future of maize research is promising. Advances in

experimental design and the increased availability of

germplasm resources move us ever closer to dissecting

the molecular and functional diversity of maize. Mapping

QTLs to the level of individual genes will provide new

insights into the molecular and biochemical basis for

quantitative trait variation, and will identify novel targets

for crop improvement for the 21st century.
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